

Available online at www.sciencedirect.com

JOURNAL OF SOLID STATE CHEMISTRY

Journal of Solid State Chemistry 180 (2007) 1826-1831

www.elsevier.com/locate/jssc

Phase transition between two anhydrous modifications of NaHSO₄ mediated by heat and water

Christopher D. Zangmeister¹, Jeanne E. Pemberton*

Department of Chemistry, University of Arizona, 1306 East University Boulevard, Tucson, AZ 85721, USA

Received 12 February 2007; received in revised form 16 March 2007; accepted 22 March 2007 Available online 11 April 2007

Abstract

The phase transition between the two anhydrous modifications of NaHSO₄ (α and β) was studied using Raman spectroscopy and differential scanning calorimetry. These measurements indicate that β -NaHSO₄ is a metastable phase and readily undergoes phase transition to thermodynamically stable α -NaHSO₄ with an exothermic enthalpy change of 3.5 kJ/mol. Both thermal (temperatures >434 K) and chemical (exposure to H₂O) pathways were identified for this transition. The transition is irreversible, and α -NaHSO₄ is an intermediate phase between β -NaHSO₄ and NaHSO₄ · H₂O. The possible mechanism of the phase transition is discussed. © 2007 Elsevier Inc. All rights reserved.

Keywords: α-NaHSO₄; β-NaHSO₄; Phase transition; Raman spectroscopy; Differential scanning calorimetry

1. Introduction

Previous work from this laboratory has established the existence of a phase transition between two anhydrous modifications of NaHSO₄, β - and α -, on the surface of NaCl [1]. This previous report was the first observation of this phase transition and opens a new route for the preparation of pure β -NaHSO₄. Previous studies of anhydrous NaHSO₄ have shown that β -NaHSO₄ is difficult to isolate as the pure phase [2–4]. Thus, it has been speculated that β -NaHSO₄ may be metastable. Direct experimental evidence for the relationship between the α - and β -phases, and the stimuli required to initiate a phase transition between them, has yet to be determined. This study elucidates two such stimuli, heat and H₂O vapor, and defines the relationship between α -NaHSO₄, β -NaHSO₄, and NaHSO₄ · H₂O.

NaHSO₄ is in a family of compounds with the general formula *MHBX*4 (M = Na, K, Rb, Cs, N₂H₅, NH₄; $BX_4 =$ BeF₄, SO₄, and SeO₄) [2–15]. Interest in this class of compounds has been driven by the known superionic

*Corresponding author. Fax: +1 520 621 8248.

E-mail address: pembertn@u.arizona.edu (J.E. Pemberton).

proton conductivity of certain members, especially $CsHSO_4$ [3–8,10,12]. These compounds contain different two-dimensional hydrogen bonds that allow several crystallographic phases to exist, each having different physical properties. Metastable phases exist for nearly all such compounds, and these phases undergo transitions to more thermodynamically stable phases via multiple routes, mediated and/or catalyzed by H₂O exposure, temperature, and pressure [4–6,8].

 α -NaHSO₄ is triclinic, space group $P\overline{1}$, with a = 0.7005, b = 0.7125, c = 0.6712 nm [13,14]. The crystal structure (Fig. 1b) contains two distinct HSO₄⁻ environments. Type A HSO₄⁻ are doubly hydrogen-bonded dimers that extend across the plane of symmetry. Type B HSO₄⁻ are singly hydrogen-bonded to Type A dimers. This combination results in a structure consisting of layered infinite HSO₄⁻ chains that run in the (110) direction in which each Na⁺ is coordinated by six HSO₄⁻.

In 1978, Sonneveld discovered a second modification of NaHSO₄ termed the β -phase [14]. β -NaHSO₄ is monoclinic, space group P2/n, with a = 0.8759, b = 0.7500, c = 0.5147 Å. The β phase (Fig. 1a) consists of doubly hydrogen-bonded dimers in which each Na⁺ is coordinated by eight HSO₄. In this crystal structure, the chemical environment of each dimer is equivalent.

¹Current address: National Institute of Standards and Technology, Gaithersburg, MD 20899-8360, USA.

^{0022-4596/\$ -} see front matter \odot 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jssc.2007.03.028

Fig. 1. (a) Crystallographic projection onto b-c plane of β -NaHSO₄; $\bigcirc = Na^+$ ions, $\bigcirc = S$ atoms, $\bigcirc = O$ atoms; C and D denote equivalent HSO₄⁻ dimers; (b) crystallographic projection onto b-c plane of α -NaHSO₄; $\bigcirc = Na^+$ ions, $\bigcirc = S$ atoms, $\bigcirc = O$ atoms.

Raman spectroscopy is used here to monitor the phase transition from β -NaHSO₄ to α -NaHSO₄ mediated by exposure to temperature and H₂O vapor. The thermodynamic relationship between the two phases is determined with differential scanning calorimetry. These results reported here represent the first such studies on this phase transition and the first Raman spectroscopy of distinct α and β -phases of NaHSO₄ in bulk.

2. Experimental

2.1. Materials

NaCl (>99.999%) and NaHSO₄·H₂O (99%) were obtained from Aldrich. NaCl was recrystallized prior to use and NaHSO₄·H₂O was used as received. H₂SO₄ (96 wt%) was obtained from Aldrich and stored in a desiccator after opening. H₂O (18 M Ω , <10 ppb total organic carbon) was obtained from a Millipore-Q UV system.

 α -NaHSO₄ was obtained through dehydration of NaHSO₄ · H₂O by heating at 420–440 K for 24 h. β -NaHSO₄ was prepared by one of two routes. One route followed the procedure published by Sonneveld and Visser [13] that involved heating a 1:1 mixture of H₂SO₄:Na₂SO₄ at 420 K for 24 h. This procedure resulted in a small yield of β -NaHSO₄, ~30%, and a large amount of unreacted Na₂SO₄. An alternate preparation developed in this laboratory [1] was therefore used; this approach involves reaction of a 1:1 mixture of H₂SO₄:NaCl at room temperature for 12 h. This procedure results in the complete transformation of all NaCl to β -NaHSO₄ [1].

2.2. Instrumentation

Raman spectroscopy was performed using 125 mW of Ar⁺ laser (Coherent Innova 90-5) excitation at 514.5 nm. A bandpass filter (Barr Associates) was used to eliminate plasma lines from the beam. A Minolta f/1.2 camera lens

was used to collect scattered radiation at 90° with respect to the incident radiation. A Spex 1877 Triplemate spectrometer was used with a 600 g/mm grating in the filter stage and a 1200 g/mm grating in the spectrograph stage. The entrance slit of the spectrograph was set at 0.5 mm, the filter stage slit was set at 7.0 mm, and the spectrograph stage slit was 75 µm for a spectral bandpass of 3 cm⁻¹. A Princeton Instruments RTE-1100-PB thinned, back-illuminated CCD camera of 1100 × 330 pixel format and cooled to ~200 K was used for detection. Spectra were calibrated using Ar⁺ plasma lines. Samples were powders contained in 5-mm dia NMR tubes.

Differential scanning calorimetry was performed on a Perkin-Elmer DSC 7 calorimeter with a heating rate of 10 K/min.

3. Results and discussion

The Raman spectrum in Fig. 2a is that of the product produced using the β -NaHSO₄ synthesis method of

Fig. 2. Raman spectrum of (a) β -NaHSO₄ product from heating 1:1 H₂SO₄:Na₂SO₄ at 420 K for 24 h, (b) β -NaHSO₄ product from reacting 1:1 H₂SO₄:NaCl at room temperature for 12 h, (c) α -NaHSO₄ from heating sample in (b) to 434 K.

Sonneveld and Visser [13] involving the reaction of H₂SO₄ with Na₂SO₄. The most intense peak in this spectrum is the $v_s(SO_3)$ of unreacted Na₂SO₄ at 994 cm⁻¹, although low intensity $v_s(S-O-H)$ and $v_s(SO_3)$ peaks of β -NaHSO₄ are also observed at 904 and 1032 cm⁻¹, respectively [2,3,10,15–17]. A small peak attributed to the $v_s(SO_3)$ of α -NaHSO₄ is also observed in this spectrum at 1066 cm⁻¹. Clearly, these synthesis conditions do not result in complete conversion of Na₂SO₄ to β -NaHSO₄.

The Raman spectrum of the product resulting from the β -NaHSO₄ synthesis method developed in this laboratory is shown in Fig. 2b (peak frequencies and assignments in Table 1.) This spectrum is dominated by the single $v_s(S-O)$ of β -NaHSO₄ at 1033 cm⁻¹ with the v_s(S–O–H) mode observed at 904 cm⁻¹. All peaks in this spectrum are associated with β -NaHSO₄ indicating complete conversion of NaCl to β -NaHSO₄. The exclusive formation of β -NaHSO₄ in this new synthetic approach suggests a specific solid-state reaction pathway that may result from similarities in the crystal structures of NaCl and β -NaHSO₄. As in NaCl, the Na⁺ in β -NaHSO₄ are confined to a single lattice plane (Fig. 1a), and a layer of HSO₄⁻ reside in a plane offset from the Na⁺ plane. Such similarities may facilitate the formation of β -NaHSO₄ during anion place exchange. In contrast, the Na⁺ in α -NaHSO₄ are offset from one another in the unit cell. Thus, a similar place exchange reaction of NaCl to α-NaHSO₄ would require substantial lattice rearrangement.

Sonneveld and Visser qualitatively compared the β - and α -NaHSO₄ crystal structures in terms of the relative positions of Na⁺ in each [14]. In α -NaHSO₄, each Na⁺ is coordinated by six HSO₄⁻ and is comparable to an offset NaCl-like structure. In contrast, in β -NaHSO₄, each Na⁺ is coordinated by eight HSO₄⁻ with all Na⁺ confined to a single plane as noted above. This comparison suggests that the similarity between the β -NaHSO₄ and NaCl crystal

Table 1

Raman peak frequencies and assignments for anhydrous $\rm NaHSO_4$ modifications

Peak frequency (cm ⁻¹)		
α-NaHSO4	β -NaHSO ₄	Assignment ^{a,b}
416	421	$\delta(\mathrm{SO}_3)$
427		
447	439	$\delta(SO_3)$
469		
568	575	$\delta_{\rm s}({\rm SO}_3)$
587	591	
605		$\delta_{a}(SO_{3})$
630	617	
875	904	$v_{\rm s}(\rm S-O-H)$
1006	1033	$v_{\rm s}({\rm SO}_3)$
1066		
1250	NO ^c	$v_{a}(SO_{3})$

 ${}^{a}\delta$ = bend; v = stretch; s = symmetric; a = asymmetric.

^bFrom Refs. [2,15–17].

^cNot observed in these experiments.

structures in terms of Na⁺ position is a stronger influence on the formation of β -NaHSO₄ in this reaction than the degree of Na⁺ coordination.

3.1. Thermal induction of β -NaHSO₄ to α -NaHSO₄ phase transition

The effect of heating β -NaHSO₄ to 434 K in air results in the Raman spectrum shown in Fig. 2c characteristic of α -NaHSO₄ [17]. Heat treatment results in splitting of the $v_s(SO_3)$ into two modes at 1006 and 1066 cm⁻¹ and the $v_s(S-O-H)$ mode shifts from 904 to 875 cm⁻¹. This spectrum can also be produced by dehydration of NaHSO₄ · H₂O at 413 K. The $v_s(SO_3)$ mode splitting in α -NaHSO₄ is the result of two HSO₄⁻ environments, and is similar to the splitting observed previously in KHSO₄ [16,17]. Similar splitting is also observed for the lower frequency bending modes of α -NaHSO₄.

The enthalpy change associated with the heat-mediated transition of β -NaHSO₄ to α -NaHSO₄ has been explored using differential scanning calorimetry. These results are shown in Fig. 3. For α -NaHSO₄ (Fig. 3a), a single endothermic event occurs at 453 K due to the melting of α -NaHSO₄. For the first heating cycle of NaHSO₄ · H₂O (Fig. 3b), dehydration of NaHSO₄ · H₂O to α -NaHSO₄, an endothermic process, occurs at 345 K with a ΔH of 14.5 kJ/mol. This followed by the melting of α -NaHSO₄ at 453 K. A second heating cycle of the resulting material (Fig. 3c) is identical to the first heating cycle for α -NaHSO₄ with a single endothermic event at 453 K due to melting. Reheating the same sample verifies that dehydration of NaHSO₄ · H₂O results in the formation of α -NaHSO₄.

The differential scanning calorimetry behavior for β -NaHSO₄ (Fig. 3d) is quite different from that of α -NaHSO₄ in that it exhibits a sharp, exothermic transition of -3.5 kJ mol^{-1} at 434 K; this process is assigned to the transformation of β -NaHSO₄ to α -NaHSO₄. This transition starts with an endothermic rise that is probably due to the onset of β -NaHSO₄ melting. This melting appears to trigger the phase transition to α-NaHSO₄ that must occur predominantly in the liquid state, since no melting transition for solid a-NaHSO4 is evident in Fig. 3d. In addition, a small but variable magnitude endothermic peak is observed at 425 K that remains unassigned. This may represent release of trapped residual HCl formed in the reaction of H₂SO₄ with NaCl. A second heating cycle of this material (Fig. 3e) is identical to the first heating cycle for α-NaHSO₄.

Previous studies of heat-mediated phase transitions in this family of compounds have also resulted in values for phase transition enthalpies [2–10]. For example, endo- and exothermic transitions between anhydrous CsHSO₄ phases occur in a similar temperature regime (375–415 K) with typical transition enthalpies of -5.5-1.1 kJ mol⁻¹. Thus, the -3.5 kJ mol⁻¹ transition observed here for the β -NaHSO₄ to α -NaHSO₄ phase transition is similar to those measured in related systems.

Fig. 3. Differential scanning calorimetry of (a) first heating cycle of α -NaHSO₄, (b) first heating cycle of NaHSO₄ · H₂O, (c) second heating cycle of material from completion of (b), (d) first heating cycle of β -NaHSO₄, (e) second heating cycle of material from completion of (d).

3.2. H_2O induction of β -NaHSO₄ to α -NaHSO₄ phase transition

In addition to thermal induction of this phase transition, previous studies in this laboratory have demonstrated that it can also be induced by H₂O vapor [1]. The effect of exposing powdered β -NaHSO₄ to H₂O vapor was studied as a function of time using Raman spectroscopy (Figs. 4a–c). The spectrum of β -NaHSO₄ is shown in Fig. 4a. With exposure of this material to 24 Torr (100% RH) H₂O for increasing time, the three prominent bands of α -NaHSO₄ at 875, 1006, and 1066 cm⁻¹ increase in intensity at the expense of the bands due to β -NaHSO₄. The β -NaHSO₄ modes disappear completely after 36 min of H₂O exposure at this partial pressure. The effect of exposing β -NaHSO₄ to a lower H₂O partial pressure was also studied and the same transformation to α -NaHSO₄ occurs but requires longer time for completion. For example, the Raman spectrum of β -NaHSO₄ after (Fig. 4e) exposure to <2.5 Torr (<10% RH) H₂O vapor for 240 h shows only partial transformation. Not surprisingly, the rate of the H₂O-induced phase transition is related to H₂O partial pressure.

3.3. Reversibility of β -NaHSO₄ to α -NaHSO₄ phase transition

Dehydration experiments at high and low temperature, and with H₂O exposure were conducted on NaHSO₄ · H₂O, β -NaHSO₄, and α -NaHSO₄ to determine the reversibility of the β -NaHSO₄ to α -NaHSO₄ transition. No experimental conditions that allow direct β -NaHSO₄ formation from NaHSO₄ · H₂O or α -NaHSO₄ were found. Formation

Fig. 4. Solid β -NaHSO₄ (a) in dry air, after exposure to 24 Torr (100% RH) H₂O for (b) 16, (c) 24, and (d) 36 min, and (e) after exposure to <2.5 Torr H₂O vapor for 240 h.

Fig. 5. Proposed thermodynamic relationship between β -NaHSO₄, α -NaHSO₄, and NaHSO₄ · H₂O.

of α -NaHSO₄ both from complete dehydration of NaHSO₄ · H₂O and from exposure of β -NaHSO₄ to heat or H₂O vapor is possible. However, Raman spectra acquired before and after heating both α - and β -NaHSO₄ above their melting points indicate that α -NaHSO₄ is the sole product after cooling and solidification of these melts. Thus, it is concluded that the β -NaHSO₄ to α -NaHSO₄ transition is irreversible under these conditions.

Collectively, these results allow construction of an energy relationship between β -NaHSO₄, α -NaHSO₄, and NaHSO₄ · H₂O as shown in Fig. 5. H₂O is a catalyst in this system and reduces the activation barrier for the phase transition into a regime that is accessible at room temperature. α -NaHSO₄ is the thermodynamically stable anhydrous modification and is the intermediate phase between β -NaHSO₄ and NaHSO₄ · H₂O. However, α -NaHSO₄ is spontaneously rehydrated to form NaHSO₄ · H₂O.

3.4. Proposed mechanism for β -NaHSO₄ to α -NaHSO₄ phase transition

Insight into the mechanism of the β -NaHSO₄ to α -NaHSO₄ phase transition can be obtained by considering the crystal structures of these modifications and thermodynamic data obtained in this study. Crystallographic projections of the two NaHSO₄ modifications are shown with a view down their a axes in Fig. 1. The transformation of β -NaHSO₄ is proposed to occur through breaking of the hydrogen bonds of HSO₄⁻ groups C and D (Fig. 1a) in β -NaHSO₄, either thermally or by hydration of Na^+ , to allow interior movement of either the C or D HSO₄⁻ with eventual formation of two new hydrogen bonds (dimeric HSO_4^- A in Fig. 1b) that result in the infinite chain-like structure of α -NaHSO₄. Formation of monomeric HSO₄⁻ B in Fig. 1b in α-NaHSO₄ would result from concomitant rotation of either the C HSO₄⁻ (if the D participates in forming the two hydrogen bonds of the infinite chain) or the D HSO₄⁻ (if the C participates in forming the two hydrogen bonds of the infinite chain) to form a single hydrogen bond with an infinite chain HSO_4^- of α -NaHSO₄.

 Na^+ movement is significant between these two modifications, and is hypothesized to be initiated by HSO_4^- movement resulting from hydrogen bond breaking in β -NaHSO₄, leading to Na⁺ translation into position to form α -NaHSO₄.

H₂O vapor may induce this transition through hydration of Na⁺ on the β -NaHSO₄ surface. This would have the effect of shielding the Na⁺ positive charge and decreasing the activation energy required for hydrogen bond breaking and rearrangement. Surface-bound H₂O may also hydrate the second layer of the β -NaHSO₄ lattice once hydrogen bonding in the top layer is disrupted. In this way, H₂O could catalyze the phase transition without significant uptake of bulk H₂O.

On the basis of the Raman spectroscopy and differential scanning calorimetry studies presented here, it is proposed that the β - to α -NaHSO₄ phase transition is irreversible. However, the small transition enthalpy $(-3.5 \text{ kJ mol}^{-1})$ between β - and α -NaHSO₄ suggests that this irreversibility is dictated by thermodynamic considerations other than ΔH , such as ΔS for the transformation. Given the relatively small enthalpy for this transformation $(-3.5 \text{ kJ mol}^{-1})$, one infers that ΔS must be sufficiently positive to make the process spontaneous. Based on the crystal structures of each phase, one can propose the change in entropy from β to α -NaHSO₄ to be positive on the following basis. The infinite chain HSO₄⁻ structures of α -NaHSO₄ may be more thermodynamically stable than the dimer HSO₄⁻ structures in β -NaHSO₄. However, the addition of a singly hydrogenbonded HSO₄⁻ into the α -NaHSO₄ structure is proposed to increase the entropy in this structure relative to the doubly hydrogen-bonded HSO₄ dimers in β -NaHSO₄.

4. Conclusions

The phase transition of NaHSO4 from the β - to α anhydrous modifications is induced by temperature and H₂O vapor exposure. This observation is similar to that for related compounds in this family and appears governed by the presence of hydrogen bonds in their structures. Differential scanning calorimetry results suggest that this phase transition may be dictated by changes in ΔS .

Acknowledgments

The authors gratefully acknowledge support of this work by the National Science Foundation. The authors also wish to thank Dr. Michael Carducci for his technical assistance.

References

- C.D. Zangmeister, J.E. Pemberton, J. Am. Chem. Soc. 122 (2000) 12289–12296.
- [2] J. Baran, J. Mol. Struct. 162 (1987) 211-228.
- [3] V. Varma, N. Rangavittal, C.N.R. Rao, J. Solid State Chem. 106 (1993) 164–173.
- [4] P. Colomban, M. Pham-Thi, A. Novak, Solid State Ion. 24 (1987) 193–203.
- [5] B. Baranowski, J. Lipkowski, A. Lundén, J. Solid State Chem. 117 (1995) 412–413.

- [6] B. Baranowski, M. Friesel, A. Lundén, Z. Naturforsch. 42a (1987) 565–571.
- [7] B. Baranowski, M. Friesel, A. Lundén, Z. Naturforsch. 41a (1986) 733–736.
- [8] B. Baranowski, M. Friesel, A. Lundén, Z. Naturforsch. 41a (1986) 981–982.
- [9] S.H. Kandil, M.E. Kassem, N. Abd El-Rehim, A.M. Bayoumi, Thermochim. Acta 132 (1985) 1–5.
- [10] M. Pham-Thi, P. Colomban, A. Novak, R. Blinc, J. Raman Spectrosc. 18 (1987) 185–194.
- [11] R.M. Guseinov, S.M. Gadzhiev, Ionics 2 (1996) 155-161.

- [12] E. Ortiz, R.A. Vargas, B.E. Mellander, J. Phys.: Condens. Matter 18 (2006) 9561–9573.
- [13] E.J. Sonneveld, J.W. Visser, Acta Crystallogr. B 35 (1979) 1975–1977.
- [14] E.J. Sonneveld, J.W. Visser, Acta Crystallogr. B 34 (1978) 643-645.
- [15] B. Dey, Y.S. Jain, A.L. Verma, J. Raman Spectrosc. 13 (1982) 209–212.
- [16] A. Goypiron, J. de Villepin, A. Novak, J. Raman Spectrosc. 9 (1980) 297–303.
- [17] J. Baran, M.M. Ilczszyn, M.K. Marchewka, H. Ratajczak, Spectrosc. Lett. 32 (1999) 83–102.